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Abstract

Variants of the stream power model have become standard for large-scale erosion modeling in geographic information

systems (GIS) because they can be applied over broad areas without the need for detailed knowledge of stream characteristics.

GIS-based implementations of the shear stress, stream power per unit length and stream power per unit area models are closely

related to one another and related also to empirical sediment yield models derived from continental-scale factor analyses. Based

on a detailed examination of the implementation of stream power analyses at the scale of continental mountain ranges, we

demonstrate that: (1) the careful selection of a digital elevation model (DEM) projection can minimize length and area distortion

when analyzing large portions of the earth (such as the Himalaya or Andes) in the two-dimensional plane of a DEM. (2) The

area-discharge proxy frequently employed in GIS-based stream power studies may not be appropriate for rivers that flow

through significant rain shadows or climatic zones. (3) Decreasing the resolution of a DEM from 30- to the 900-m typical for

studies of large extent decreased the mean slopes of 15 rivers in the Olympic mountains by 65%, increased the mean drainage

basin size by 14%, and caused a 17% reduction in median main-stem channel length. (4) The coefficients k, m and n common to

different versions of the Stream Power Law are themselves sensitive to grid resolution when determined from an analysis of

area–slope plots. (5) Stream power per unit area decreased in the Olympics mountains as grid resolution decreased.
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1. Introduction

Over the past decade, the use of geographic infor-

mation systems (GIS) and digital elevation models

(DEMs) has become increasingly pervasive in fluvial

geomorphic analysis. GIS are now widely employed

in small- to medium-sized watershed studies where

high-resolution DEMs can be analyzed along with

databases containing land cover, hydrologic, climatic,

and historical records. In particular, GIS are beginning

to play a role in the analysis of continental denudation

where large spatial scales (i.e., small cartographic

scale ratios on a map or DEM) and data volumes

preclude the use of traditional geomorphic analysis

techniques (Walling and Webb, 1996; Ludwig and

Probst, 1998; Montgomery et al., 2001; Finlayson et

al., 2002). A growing body of literature is available to

guide the application of GIS technology to landscape
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analysis (particularly fluvial studies) in small-scale

areas (e.g., Gurnell and Montgomery, 1999; Maid-

ment and Djokic, 2000). However, the adaptation of

GIS to studies of continental-scales is new and little

information is available that outlines the problems of

working at large scales in GIS.

The productive use of GIS in large-scale studies is

hindered by poor understanding of large-scale denu-

dation processes and significant technological limita-

tions intrinsic to GIS. Nevertheless, GIS-based ap-

proaches provide one of the few means available for

systematically examining the role of spatial variability

in soil properties, rock types and numerous other

geologic and climatic properties in the evolution of a

landscape. The spatially explicit nature of GIS analy-

ses and the GIS emphasis on incorporating real-world

data combine to make GIS a powerful tool for building

insight into the evolution of complex landscapes and

landscape processes.

This paper focuses on modeling large-scale fluvial

erosion in continental mountain ranges. Examples of

coarse-scale applications will be drawn from our

experience in modeling the fluvial systems of the

Himalaya (Finlayson et al., 2002). Where validation

is required at higher DEM resolutions than are pres-

ently available for the Himalaya, we use the Olympic

Mountain Range of Washington State. We focus on

issues that are peculiar to working at large scales and

avoid issues common to smaller scale studies.

2. Fluvial erosion models

The two primary approaches for modeling fluvial

erosion in mountainous terrain are (i) the extrapolation

of statistical models of river sediment yield parame-

ters with forcing variables, and (ii) the physical

modeling of river processes directly. Both styles of

modeling were originally applied to small watersheds

before the advent of GIS and have matured with the

increasing power of computer technology. The stat-

istical model, in particular, has been applied simulta-

neously to large portions of the earth within a GIS

environment (Walling and Webb, 1996; Ludwig and

Probst, 1998).

Both approaches have limitations. In the case of

statistical models, the functional relationship between

physical factors and the sediment yield response is

heavily scale and situation dependent while, at the

same time, the physical processes eroding the river bed

and transporting sediment are lumped and parameter-

ized away. Statistical models typically yield a picture

of erosion that is heavily biased by modern anthro-

pogenic impacts and the limitations of too little data

collected over too short a time frame. Physical models,

on the other hand, can rarely be implemented in a

natural environment with any great confidence. The

detailed physics of erosion and sediment transport are

difficult to grapple with under controlled circumstan-

ces and can become unmanageable in natural systems,

particularly mountain rivers that depart markedly from

the ideal, canal-like forms assumed in conventional

hydraulic formulae.

2.1. Statistical models

Early attempts to elucidate the controls on the

sediment yield of world rivers were hampered by a

lack of data, inadequate extrapolation procedures, and

the scale-dependent nature of sediment yield data

(Langbein and Schumm, 1958; Walling and Webb,

1996). Moreover, they provided little information on

the spatial variability of erosion within the upstream

basin (Walling and Webb, 1996). Recent efforts,

however, have made extensive use of GIS technology

to couple sediment yield data with hydroclimatic,

biological, and geomorphological parameters (e.g.,

Ludwig and Probst, 1998). These empirical models

help to elucidate the first-order controls on sediment

yield and have been used to develop denudation maps

of the continents (Walling and Webb, 1996; Ludwig

and Probst, 1998).

The current estimate of the total global sediment

yield is about 20 Gt a� 1 (Milliman and Syvitski,

1992), more than 50% of which is thought to be

human induced (Walling and Webb, 1996). Attempts

to explain the natural variability in sediment yields

have invoked mean precipitation (e.g., Langbein and

Schumm, 1958; Wilson, 1973), relief (Ahnert, 1970),

or various combinations of discharge, contributing

area, and lithology (e.g., Jansen and Painter, 1974).

Ludwig and Probst (1998), in one of the most

extensive sediment yield regression analyses yet

attempted, compared 21 parameters for 60 major

world rivers (the basins of which encompass about

50% of the earth’s continental surface). They found
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that three factors best describe global suspended

sediment yield:

Qss ¼ 0:02ðQ� S � PsÞ ð1Þ

where Qss is total suspended sediment yield (t km� 2

a� 1), Q is mean annual runoff (mm), S is the average

basin slope, and Ps is seasonal precipitation variability

(mm). Ludwig and Probst (1998) found a strong

correlation between hydrologic variables, and a rela-

tively weak negative correlation between sediment

yield and drainage basin size. Overall, Eq. (1) resulted

in an average global sediment yield of 139.4 t km� 2

a� 1 with a total sediment flux of 14.8 Gt a� 1, about

75% of world estimate by Milliman and Syvitski

(1992).

2.2. Physical models

Fundamentally, the rate of river incision into bed-

rock is a function of the basal shear stress of the river:

sb ¼ �cR
dE

dx
ð2Þ

where sb is the basal shear stress, c is the specific

weight of water, R is the hydraulic radius and dE/dx is

the energy grade line of the channel, which in uniform

flow is equivalent to the channel slope (Chow, 1959).

Particle motion begins when the effective bed shear

stress (sV) exceeds the critical shear stress for grain

motion (sc):

qb ¼ kðsV� scÞn ð3Þ

where qb is the bed load transport capacity, and k and

n are empirical values. sV is the portion of the basal

shear stress (sb) corrected for momentum losses

caused by hydraulic roughness:

sV ¼ sb � sW� sj� : : : � sn ð4Þ

where sW�: : :� sn are the momentum losses due to

gravel bars, woody debris, boulder obstructions, and

so on (e.g., Buffington and Montgomery, 1999).

While local calculations of Eq. (3) are possible in a

GIS analysis in practice, the detailed information

required for evaluating Eq. (4) is rarely available. In

addition, the critical shear stress that must be over-

come for particle motion has a wide range for natural

mountain rivers (Buffington and Montgomery, 1997).

The problem of erosion into bedrock is even more

complex, as the effects of corrosion, corrasion, and

cavitation combine to work against the electrochem-

ical forces that bind a rock together (Knighton, 1998)

thereby complicating the definition of sc considerably.
In addition, the critical shear stress required to erode

bedrock is greater than that for incipient motion of

sediment cover (Costa and O’Connor, 1995), but how

much greater remains poorly constrained and is likely

to vary considerably.

2.3. Stream power

As an alternative to the first-principles approach to

river incision and the statistical models presented

above, a number of closely related and more-or-less

simplistic models have emerged that attempt to relate

river incision (e) to basal shear stress (sb) or some

function of stream power (X) (Howard, 1998; Sklar

and Dietrich, 1998; Stock and Montgomery, 1999;

Whipple and Tucker, 1999). After normal substitu-

tions, most of these models become quite similar and

are collectively known as Stream Power Laws of river

incision.

The stream power equations make extensive use of

the concept of hydraulic geometry first introduced by

Leopold and Maddock (1953). Downstream hydraulic

geometry equations characterize empirical power law

relationships between the discharge of a river, Q, and

river parameters, v, such as channel width or depth:

v ¼ cQd ð5Þ

where c and d are fitting parameters. As discharge is a

function of drainage area, it has become common

practice in DEM applications to adopt an area-dis-

charge proxy (Q = aAh) in hydraulic geometry rela-

tions to yield:

v ¼ cAd ð6Þ

The use of hydraulic geometry relationships and

the area-discharge proxy in fluvial analyses based on

DEMs has the advantage that river parameters such as

width and depth are rendered independent of the

spatial resolution of the DEM. Hence, a 1-km reso-

lution DEM grid does not restrict the analytical
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representation of river channels to a minimum or

maximum width of 1 km. Many studies have shown

that hydraulic geometry equations perform acceptably

for alluvial rivers (e.g., Leopold and Maddock, 1953;

Carlston, 1969), but few have parameterized Eq. (6) in

mountainous terrain (e.g., Montgomery and Gran,

2001). Nevertheless, we shall adopt the common

practice of invoking hydraulic geometry relations in

our analyses as needed to estimate mountain river

parameters that have not been, or cannot be measured

directly from a DEM.

The shear stress version of the Stream Power Law

was first introduced to model badland evolution of

coastal plains in the State of Virginia (Howard and

Kerby, 1983) and has since been widely applied to

bedrock river incision in mountains:

ė ¼ �k1s
b
b ð7Þ

where ė is the river incision rate, k1 is the coefficient of
erodibility, and b is a positive constant. Standard

substitutions that make Eq. (7) more tractable than

physical models based on Eq. (3) include the

hydraulic geometry-based approximation for the

hydraulic radius of the channel (Leopold and Mad-

dock, 1953):

Rcd ¼ cAf ð8Þ

where d is the channel depth, A is the cumulative

drainage area, c and f are positive constants; and an

approximation for the energy grade line of the channel

that, under uniform conditions, is approximately equal

to the channel gradient (S):

dE

dx
¼ S: ð9Þ

Substituting Eqs. (2), (8) and (9) into Eq. (7) yields:

ė ¼ k1ðccÞbAfþbSb ð10Þ

A similar approach is to relate ė to the stream

power per unit length of channel (X):

X ¼ cQS ð11Þ

The stream power per unit area or specific stream

power (x) can be obtained by dividing Eq. (11)

through by the width of the channel (w):

x ¼ X
w

ð12Þ

Here again, the practice is to simplify Eqs. (11) and

(12) by using hydraulic geometry relations to sub-

stitute for discharge (Q = aAh) and channel width

(w = sAe). For both the case of stream power per unit

length:

ė ¼ CX ¼ CcQS ð13Þ

¼ ðCcaÞAhS ð14Þ

and for specific stream power:

ė ¼ CX
w

¼ CcQS
sAe

¼ CcaAhS

sAe
ð15Þ

¼ Cca
s

� �
Ah=eSn ð16Þ

where s and e are constants. Eqs (10), (14) and (16) all

share the same general form of:

ė ¼ kAmSn ð17Þ

where k, m, and n are constants.

A great deal of energy has been expended attempt-

ing to parameterize Eq. (17) for various environments.

Accounting for typical values of h, e, f and b, standard

values of the exponents m and n are considered to be

m = 1, n = 1 for stream power per unit length models;

m = 1/2, n = 1 for a specific stream power model; and

m = 1/2 and n = 2/3 for a shear stress model (Whipple

and Tucker, 1999), while values of k can vary over

several orders of magnitude (Stock and Montgomery,

1999).

The generalized Stream Power Law (Eq. (17)) is

based on Eq. (2) which attempts to characterize the

basic physical processes thought to be driving erosion

in a river system, but in practice, the physical meaning

of the equation is obscured by the numerous coef-

ficients making up k, m and n. Eq. (17) does not

model any of the factors responsible for momentum

loss (and which thereby reduce sb to sV) (Howard,

1998; Sklar and Dietrich, 1998); k is dimensional and
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thus scale dependent (Whipple and Tucker, 1999) as

well as widely variable with lithology and environ-

ment (Stock and Montgomery, 1999); and the unit

stream power version rests on a series of assumptions

about hydraulic geometry supported by relatively

sparse data from mountainous terrain (Montgomery

and Gran, 2001). What limited success this equation

has had in modeling real river systems may owe as

much to its similarity with Eq. (1) as to any founda-

tion in first principal physics. Even if this concern

proves warranted, there are few alternative erosion

models that can be applied systematically to conti-

nental-scale landscapes.

3. Digital elevation model resolution

Early enthusiasm for GIS-based geomorphic anal-

ysis was dampened by the sober reality that hydro-

logic modeling using DEMs is strongly affected by

use of coarse grid sizes that cannot resolve fine-

scale landscape features (Zhang and Montgomery,

1994; Walker and Willgoose, 1999). The acquisition

of high-resolution topography improves the situation

for engineers working in small watersheds, but it

does relatively little for geomorphologists working

with continental landscapes who must cope with the

cost of increasing resolution, particularly if a full

suite of tectonic and climatic models must also be

coupled. The balance between computational effi-

ciency and the desire for finer resolution data must

also include the considerable time required to pre-

pare a DEM for hydrologic modeling (Garbrecht

and Martz, 2000; Saunders, 2000). In addition,

large-scale analyses compound the distortion inher-

ent in representing the earth in the planar format of

DEMs.

The following sections deal with cartographic and

measurement scale and how they effect GIS imple-

mentations of erosion models. The first section

examines how map projections affect length and

area measurements and presents an example analysis

for determining the error involved with two common

projections in order to minimize the distortion over

the area of interest. The second looks at the cost of

coarse grid resolution on the representation of

watershed boundaries, slope, and river long profile

length.

3.1. Map projection

The large spatial extent of the analyses considered

in this paper pushes the ability of DEMs to represent

an ellipsoidal earth. Raster DEMs or grids are a

regular two-dimensional matrix of elevations. Hence,

grids suffer the same distortion problems inherent to

representing the earth as traditional two-dimensional

maps. It is necessary to carefully select a map projec-

tion in order to minimize distortions in distance and

area throughout an analysis region. While GIS pack-

ages greatly simplify the transformation of data into

suitable projections, it is worth examining the details

of this process because the poor choice of projection

can compromise an analysis, while a judicious one

can minimize the loss of accuracy, even over vast

territories. For example, the US Geological Survey

using an Albers projection with standard parallels at

29j30Vand 45j30Vhas plotted the contiguous states of
the United States of America with a maximum scale

error of only 1.25% (McDonnell, 1979). It is possible

to do considerably worse with a poor choice of

projection.

Prior to projection, a GIS typically assumes an

ellipsoidal approximation to the surface of the earth

and the elevation data is projected onto the plane of

the DEM via any one of a number of classical map

projection formula (Snyder, 1987). For our purposes,

it will greatly simplify the discussion of map projec-

tion properties to assume that the world is a perfect

sphere where the surface area equals that of the earth.

The distortion involved in this spherical approxima-

tion (relative to an ellipsoidal approximation) of the

earth is relatively small compared to the typical

distortion incurred by projecting the spheroid onto a

plane, but it is not discussed below (see Snyder, 1987

for a formal treatment of map projection properties

and formulae).

The length distortion factor (Hradı́lek and Hamil-

ton, 1973), or scale factor (McDonnell, 1979), sf, of a

unit length PP1 on a sphere mapped onto a plane is:

sf ¼ PVP1V

PP1
¼ map length

sphere length
ð18Þ

To understand how distortion affects a single point

on the GIS raster, we employed Tissot’s Indicatrix
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where a differentially small circle on a sphere is pro-

jected onto a plane. The resulting shape is always an

ellipse. The ratio of the lengths of the semimajor axis,

a, and the semiminor axis, b, of this ellipse represents

the maximum and minimum distortion at the point

being considered (Hradı́lek and Hamilton, 1973;

McDonnell, 1979). If the ellipse is circular (a = b),

the projection is conformal; if the ellipse has an area

equal to that of the generating circle, the projection is

equal-area; finally, if either a or b is constant, the

projection is equal-distant in the corresponding direc-

tion. For many common map projections, a and b occur

along the meridians and parallels of the earth making it

relatively easy to calculate the scale factors associated

with length, area, and angle. It should be remembered

that no projection of a sphere onto a plane can preserve

both shape and area simultaneously.

To illustrate the effect of map projections on the

scale of a raster grid, consider the Himalayan moun-

tains and vicinity as shown in Fig. 1 clipped from the

GTOPO30 DEM of the world (US Geological Survey,

1996). The data are delivered in the cylindrical equi-

distant projection or plate carrée (Fig. 1A). The plate

carrée projection is standard (sf = 1) along the Equator

and all meridians, but parallels are exaggerated by 1/

cos /, where / is latitude, so that they are always the

same length as the Equator, even at the poles. Hence,

the semimajor axis of Tissot’s indicatrix (a) aligns

with the parallels of the plate carrée projection, while

the semiminor axis (b) aligns with the meridians. The

Fig 1. Map projections of Northern India, the Himalaya and the Tibetan Plateau. A portion of the GTOPO30 DEM of Asia is shown in (A) the

cylindrical equidistant projection (plate carrée) and (B) a conic equal-area with two standard parallels (Albers) located at 35jN and 25jN. Black
is low elevation, white is high.
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maximum and minimum length distortion factors a

and b (Eq. (18)) for the plate carrée projection are:

a ¼ 2pR� 1=cos/
2pR

¼ sec/ ð19Þ

b ¼ 2pR
2pR

¼ 1 ð20Þ

a� b ¼ sec/ ð21Þ

where R is the radius of the earth. The length of 1j (in

kilometers) along a parallel is plotted against a sphere

with a radius of 6370 km in Fig. 2A along with

resulting maximum and minimum scale factor a (Fig.

2B). Because the minimum length distortion b is

everywhere equal to 1, the area distortion in the plate

carrée projection (Eq. (21)) is everywhere equal to

a= sec /. For the latitude range shown in Fig. 1A (20–

40jN) and highlighted in gray in Fig. 2, the minimum

scale factor is 1.064 (6.4% exaggeration in east–west

distance and area measurements) and reaches 1.305

(30.5% exaggeration in east–west distances and area)

by the northern border of the grid. This projection

reaches a length and area distortion factor of 2 (a= 2) at

a latitude of F 60j and becomes infinite at the poles.

In order to reduce the east–west scale exaggeration

in the area of the Himalaya and southern Tibet, the

grid in Fig. 1A can be projected into an Albers equal-

Fig. 2. Map projection properties. (A) The length of 1j along a parallel of the earth (spherical approximation) is compared to the length of 1j
along a parallel of the map projections of Fig. 1A and B. (B) The scale factor (sf) between each map projection and a spherical approximation of

the earth. The latitude range (shown in gray) and the standard parallels are the same as in Fig. 1.
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area projection with standard parallels located at 35j
and 25j (Fig. 1B). The Albers projection has the

following maximum and minimum distortion proper-

ties (Hradı́lek and Hamilton, 1973):

a ¼ 1ffiffiffiffiffi
2n

p sindffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C � cosd

p ð22Þ

b ¼
ffiffiffiffiffi
2n

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C � cosd

p

sind
ð23Þ

a� b ¼ 1 ðequal areaÞ ð24Þ

where d is the colatitude (90�/); and the constants n

and C are defined as follows:

n ¼ ðcosd2 � cosd1Þ
2

ð25Þ

C ¼ ðcosd2 � cosd1Þð1þ cosd1d2Þ
ðcosd2 � cosd1Þðcosd2 þ cosd1Þ

ð26Þ

where d1 and d2 are the colatitudes of the lower and

upper standard parallels, respectively (35j and 25j

in the Himalayan case). Figs. 1B and 2B show the

resulting raster and maximum length distortion a for

this projection. Between the standard parallels, the

Albers projection has a maximum length distortion

factor of 1.004 (0.4%) at 30j7Vand is never greater

than 0.0127 (1.27%) within the latitude range shown.

It also has the desirable properties that it is equal-

area (a� b = 1) and not too far from conformal

(ac b).

This demonstration is not to say that the conic

equal-area (Albers) projection is inherently better

than the cylindrical equidistant (plate carrée) for

GIS purposes. Rather, our point is that the choice

of projection must be considered when GIS analysis

is attempted on data sets with large spatial extent. In

fact, if the study area were chosen to be near the

Equator, the plate carrée would have performed

better than the Albers; and both projections would

entail significant distortion if the study region were

aligned along a meridian as are the Andes Mountains

of South America, where a Transverse Mercator

projection might work well. It is important to rec-

ognize the inherent limitations of the raster plane for

Fig. 3. Shaded relief maps of Mt. St. Helens, Washington State, generated from 30- and 900-m resolution DEMs. Thirty-meter resolution

topography (A) has greater detail than can be depicted here; whereas 900-m resolution topography (B) maintains only a crude approximation of

the volcano [no vertical exaggeration in the figure].
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large-scale analysis and to explicitly account for the

distortion in area and distance measure in geomor-

phic analysis.

An important caveat about raster projection is that

the process of transforming coordinate systems will

almost always necessitate re-sampling of the raster

grid. The plate carrée projection of GTOPO30, for

example, fits naturally within the orthogonal Cartesian

axes of the raster matrix; but the Albers projection

utilizes a radial (polar) coordinate system. The pro-

jected data must be re-sampled onto a Cartesian grid

using some form of interpolation scheme. Re-sam-

pling affects data fidelity, such that it may be prudent

to handle the scale distortions through the use of look-

up tables or directly within measurement algorithms

rather than re-projecting the data from the outset. This

is particularly true if the original grid has already

received significant processing (such as drainage net-

work enforcement) that would be lost during the re-

sample step of grid projection or would otherwise be

time consuming or expensive to restore.

3.2. Slope, area and length

The analysis of very large areas in GIS frequently

involves the use of relatively low-resolution spatial

databases. Often this is the result of a lack of available

information at higher resolutions. However, this sit-

uation can result from a compromise between reso-

lution and computational efficiency, particularly if the

analysis is performed in preparation for, or as part of,

a dynamically coupled geomorphic–tectonic model.

In either case, grid-cell resolution affects the statistical

properties of several important hydrologic and geo-

morphic indices. Hence, application of the Stream

Power Law (Eq. (17)) to large landscapes suffers from

Fig. 4. Major rivers and generalized precipitation field of the Olympic Mountains, Washington State. The 15 major watersheds of the Olympics

encompass a total surface area of just over 10,300 km2. Precipitation data generalized from Daly et al. (1994).
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scale issues in the representation of the landscape

within the GIS.

The cost in spatial resolution of re-sampling a 30-

m DEM of Mt. St. Helens, Washington to a 1000-m

cell size is illustrated in Fig. 3. Clearly, the loss of

detailed topographic information is severe, and hydro-

graphic characteristics derived from such a coarse grid

contain nothing but the strongest regional patterns.

Nevertheless, this coarse resolution is typical of land-

scape evolution models, and there is a need to scale

what we have learned from small watersheds to

continental river systems.

Several studies have examined the effect of grid

cell resolution on drainage area and slope and found

that slope decreases with decreasing grid size (Zhang

and Montgomery, 1994; Hammer et al., 1995; Walker

and Willgoose, 1999; Zhang et al., 1999) while drain-

age area increases (Zhang and Montgomery, 1994;

Walker and Willgoose, 1999). Comanor et al. (2000)

analyzed a low-resolution global data set of continen-

tal watersheds and river networks (Grahm et al., 1999)

and reported that, while most drainage basins were

within 50% of their actual basin size, some basins

were off by more than 100%.

We re-sampled USGS 30-m DEMs of the Olympic

Peninsula to create 90- and 900-m DEMs (Fig. 4) by

assigning to each low-resolution cell the mean eleva-

tion value of the 30-m data it replaced. The surface

area of the 15 watersheds we examined was slightly

larger than 10,000 km2, significantly smaller than the

drainage basins of large continental rivers (for exam-

ple, the mountainous portion of the Indus River

drainage basin shown in Fig. 5, covers 9.7� 105

km2). However, the 30-m data for the Olympic

Mountains are much better than public domain data

of many large mountain ranges.

Averaging the results of the 15 basins (Fig. 6), we

found a 65% decrease in mean, main-stem river slope

when moving from 30- to 900-m data and a 14%

average increase in drainage area. However, the mean

increase in drainage area was heavily influenced by two

river basins that absorbed their smallest neighbors as

the grid size increased. This had little effect on the rest

of the range where both the median drainage area and

the distribution of the drainage areas increased slightly

(Fig. 6). In addition, we calculated amedian decrease in

river length of 17%. We repeated the above analysis

with a high resolution, 10-m DEM for the two largest

rivers of the Olympics, the Elwha and the Quinault.

When moving from a 10-m DEM long profile to one

derived from a 900-m DEM, the Quinault and Elwha

Rivers lost 26% and 14% of their length, respectively.

It is tempting from this analysis to suggest a simple

scaling factor that would adjust the results of low-

Fig. 5. Himalayan portion of the Indus River drainage basin (above 250-m elevation) and generalized precipitation field. The Indus watershed

has been divided into three sub-basins based on the location of published discharge data (Collins, 1996). Alpha values used in Eq. (28) are 3.05,

1.64 and 16.8 for stations 1, 2, and 3, respectively. Precipitation data generalized from Leemans and Cramer (1991).
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resolution analysis of slope and drainage area so that

they more closely resemble high-resolution character-

istics. However, Zhang et al. (1999) found that for

slope, at least, a single fractal parameter could not

span the full range of grid resolutions considered here.

This may indicate that scaling properties are unique

for each location and that high-resolution data must be

used to generate the appropriate scale factor for low-

resolution derivatives. Alternatively, it may be evi-

dence of polygenetic topographic evolution where

different surface processes and time scales produce

multi-fractal geomorphology.

4. Application of stream power in GIS

The following sections address issues of direct

relevance to the implementation of erosion modeling

using the Stream Power Law in GIS systems. The first

concerns the area-discharge proxy that is in common

use in both analytical and computer applications. The

second discusses the parameterization of the stream

power constants and how these appear to be scale

dependent.

4.1. The area-discharge proxy

The calculation of discharge plays a significant role

in the Stream Power Law because it can attain very

large values compared to slope, and hence dominate

Eq. (17). However, the calculation of river flow is a

complex problem that is highly specific to location

and time. Further, the specific relationships between

discharge and erosion processes are not well estab-

lished. It has become common practice to try and

simplify the calculations by attempting to model only

the most significant or effective discharge (typically,

the bankfull discharge) or to substitute a surrogate for

discharge —such as drainage area— that is easier to

calculate over an entire drainage basin (Howard,

1998; Sklar and Dietrich, 1998; Stock and Montgom-

ery, 1999; Whipple and Tucker, 1999). However, the

simple area-discharge proxy may not always be

appropriate at continental scales.

Drainage area is often used as a proxy for dis-

charge in erosion models because of the paucity of

discharge data available for many world rivers. To

first order, the area-discharge proxy (Q = aAh) works

well for many small- to mid-sized watersheds in the

United States. For example, we analyzed the 1659

gauging stations found in the HCDN stream flow

database (Slack and Landwehr, 1992) and found that

drainage area explains 61% of the variation in mean

annual maximum discharge with a simple log-linear

formula (Fig. 7):

Q ¼ 0:92A0:70 ð27Þ

Fig. 6. Drainage area and slope as a function of resolution for composite distributions of measurements from the long profiles of the 15 largest

rivers in the Olympic Mountains. The central horizontal line represents the median value of all profiles; the top and bottom of the box represent

the 75th and 25th percentile of the data, the interquartile range (IQR), respectively; and the top and bottom whiskers mark the location of data

points no more than 1.5 times the IQR from the median value. Data points outside of this range are marked individually. As a function of

decreasing resolution, the mean drainage area of the 15 rivers increased by 14% while mean slope decreased by 65%.
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with Q in m3/s and A in km2. The exponent of 0.7

found here for gauged locations on rivers throughout

the continental United States is similar to exponent

values reported for downstream trends along individ-

ual rivers (0.7–1.0) (Dunne and Leopold, 1978;

Knighton, 1987). However, does the area-discharge

proxy hold for large, continental rivers? For example,

the Indus (Fig. 5) and Tsangpo/Brahmaputra Rivers

begin in the dry Tibetan plateau and flow through

hundreds of kilometers of alpine desert before turning

south onto the monsoon drenched flanks of the range.

Other large rivers throughout the world cross signifi-

cant climatic zones or rain shadows where it may be

incorrect to assume that each parcel of land contrib-

utes uniformly to the river discharge.

Fortunately, there is little computational difference

in a GIS between calculating cumulative drainage area

and calculating a precipitation-weighted cumulative

area and this can be used to estimate runoff and

discharge. For example, discharge at a cell i, can be

modeled on a DEM as the weighted sum of n

individual contributing cells j:

Qi ¼
Xn
j¼1

ðajAjPjÞ ð28Þ

where A is the cell area (m2), P is the precipitation

falling in each cell (m a� 1), and a is a calibration

coefficient. Wherever cell i has a known discharge Q,

for example, at a gauging station, it is possible to set a
for all upstream contributing cells j such that Qi=Q,

(e.g., Finlayson et al., 2002). If sufficient gauging data

is available, it is possible to model the discharge of the

river reasonably well. However, even if no discharge

measurements are available to calibrate a in Eq. (28),

it may still be better to set a = 1and use Eq. (28) as a

relative measure of discharge throughout a river

course rather than resorting to a hydraulic geometry

proxy such as Eq. (27) (we use this approach for the

Olympics below). The advantage of calculating dis-

charge from Eq. (28) over using equations like Eq.

(27) is that the GIS can begin to capture the spatial

variability in discharge that would otherwise be lost if

one were to use a uniform area-discharge proxy.

We performed the above analysis for the 16 largest

watersheds of the Himalaya using the GTOPO30

DEM (USGS, 1996), the IIASA worldwide climate

database (Leemans and Cramer, 1991), and various

sources for gauging data (see Finlayson et al., 2002).

We show the results here only for the Indus River

(Fig. 5), the calibration of which relied primarily on

three river discharge measurements from Collins

(1996). We first calculated Qi for each cell in the

GTOPO30 DEM of the Indus watershed by Eq. (28)

using a = 1. We next determined the contributing area

above each of the published discharge measurements

 

Fig. 7. Mean annual maximum discharge as a function of cumulative drainage area for the 1659 drainage basins defined by the HCDN data set

(Slack and Landwehr, 1992). The least-squares regression equation is Q = 0.92A0.70 with an R2 = 0.61.
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from Collins (1996) (shown in Fig. 5) and calculated

an a coefficient for all grid cells i in these sub-basins

that would increase or decrease Qi at the measurement

location so that it matched the published values. Note

that the sub-basins are nested, so that setting a in an

upper basin affects the discharge of the downstream

basins. The results of this discharge model are com-

pared to the standard cumulative drainage area model

in Fig. 8. Also in Fig. 8, we show the results of a

similar comparison for a very small river (the Big

River) in the Olympic mountains. No gauging data is

available for the Big River, hence a is set equal to 1 in

Eq. (28) for the entire Big River drainage basin.

For the Indus River, drainage area grows much

faster than modeled discharge (Fig. 8) and so the

area-discharge proxy likely over estimates river dis-

Fig. 8. Comparison of modeled river discharge to cumulative drainage area. The graph compares normalized modeled discharge to normalized

drainage area for a large river (Indus River, Pakistan) and a small river (Big River, Olympic Peninsula, Washington State) to assess how well

drainage area performs as a proxy for annual river discharge. The upper plot in the left panel shows the normalized drainage area (A/Amax) and

normalized discharge (Q/Qmax) of the Indus River as a function of distance from its drainage divide in kilometers. The lower plot shows the

difference ratio (A/Amax�Q/Qmax)(Q/Qmax)
� 1 between the normalized drainage area and normalized discharge. The drainage area and

normalized discharge lines in the right panel are identical for the Big River, indicating that area is an excellent proxy for modeled discharge.

This contrasts with the Indus River, where drainage area is a poor proxy for modeled river discharge with a range of error between � 50% and

over 150% reflecting large changes in environment throughout the course of the river.
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charge by as much as 150% for a significant portion

of the river’s course. In contrast to this, the Big

River flows through a nearly homogeneous precip-

itation field (Fig. 4) and shows almost perfect

correlation between modeled discharge and drainage

area. The area-discharge proxy should not be applied

to watershed analyses where there is doubt about the

uniform contribution of runoff from each cell in the

model.

4.2. Stream power parameters

One of the principal difficulties with the Stream

Power Law (Eq. (17)) is the proper parameterization

of the constants k, m, and n. A partial solution

possible in steady-state environments is to equate

uplift rate (U̇) with erosion rate (ė) and then solve

for drainage area as a function of slope (S):

ė ¼ U̇ ¼ kAmSn ð29Þ

S ¼ U̇

k

� �1=n
A�m=n ð30Þ

Following Snyder et al. (2000), the value of m/n can

be estimated by a power law regression of the form:

S ¼ ksA
�h ð31Þ

where ks=[U̇/k]
1/n and h =m/n. Assuming steady-state,

if independent information is available about one of

the exponents m or n and the uplift rate is known, k

Fig. 9. The long profile of the Elwha River extracted from 10-, 30-, 90-, and 900-m DEMs illustrating the effects of grid resolution on least-

squares regressions and thereby on h and ks. In addition to resolution effects documented in Fig. 6, the number of points available on the 900-m-

long profile is significantly reduced from the 10-m profile, changing the distribution of the data and the values of the regression from which h and

ks were calculated.
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can be backed out of ks. If the mountain range is not in

steady-state or if there is strong orographic precipita-

tion, then h p m/n and the technique of Snyder et al.

(2000) is not applicable for estimating m/n (Roe et al.,

2002).

The Olympic Mountains are approximately in

steady-state, with a long-term balance between rock

uplift and erosion rates being maintained since the

Miocene (Brandon et al., 1998; Pazzaglia and Bran-

don, 2001). We extract the long profile of the Quinault

River from each of the 10-, 30-, 90-, and 900-m

DEMs; filtered each profile to remove points with no

slope (flat areas); plotted slope as a function of area

according to Eq. (31); and fit a simple, least-squares

line through all of the available data points (Fig. 9).

Although Walker and Willgoose (1999) found that

slope vs. area plots were not sensitive to small changes

in resolution when the data were generally all of high

resolution, we found that the decrease in data points

defining the Elwha River channel (79 in the 900-m

model vs. 9800 in the 10-m model) had a profound

impact on h and ks. This was true of all of the profiles

we examined in the Olympics. Moving from 30- to

900-m resolution, we found a mean increase in h of

30% and a mean decrease in ks of 51% (Fig. 10).

Because of the log scaling of Fig. 9, a 51% drop in ks
changes k by more than an order of magnitude.

4.3. Stream power as a function of resolution

In order to summarize the discussion about scale

and stream power, it is instructive to look at an actual

stream power calculation carried out over grid reso-

lutions of 10 to 1000 m for the Elwha River, on the

Olympic Peninsula. The grids were derived from the

USGS 10-m grid as described in Section 3.2. For each

grid resolution, we calculated a precipitation-weighted

cumulative area calculation according to Eq. (28)

using annual precipitation data from Daly et al.

(1994). Because there is only one gauge on the Elwha

River, a is a constant for the whole basin and we

chose to simplify the calculations by assuming a = 1
everywhere.

The mean stream power (
_
X) increased with de-

creasing resolution as each cell represents the integra-

tion of more surface area. However, normalizing for

surface area, the mean stream power per unit area (x̄)

decreased by 66%. Although grid resolution is not a

linear measure (i.e., a 10-m grid cell is 10� 10 m2), a

plot of mean stream power and mean stream power

per unit area as a function of resolution shows that

total stream power is positively correlated with grid

size, whereas stream power per unit grid-cell area is

inversely correlated (Fig. 11). Hence, stream power

values calculated from DEMs are scale dependent and

Fig. 10. Variation in h and ks as a function of grid resolution. Values of h and ks were calculated from the long profiles of the largest rivers in the

Olympic Mountains. The long profiles were derived from 30-, 90-, and 900-m DEMs.
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calculations carried out at different resolutions cannot

be compared to one another directly.

5. Conclusion

The problem of selecting a suitable erosion model

that can scale to continental landscapes is not easily

resolved. Stream power formulations typically

account only for variation in stream discharge and

slope. They do not account for a variety of factors that

inhibit bedrock erosion, such as changes in lithology,

in-stream momentum loss due to bed forms, or the

need to mobilize bed cover. Nor do they account for

seasonal differences in rainfall that statistical models

suggest is an important factor in the variation of

sediment yield of modern rivers (Eq. (1)). Lastly, it

is not clear how to scale Stream Power Laws to

continental analyses. Most attempts to parameterize

stream power models have been performed on com-

paratively small watersheds.

In analyses of continental-scale areas, the two-

dimensional raster grid of digital elevation models

can cause severe distortion in distance and area

measurements if an appropriate map projection is

not carefully selected. Also, the grid size selected

has an effect on mean slope, drainage basin size, and

stream length. Slopes tend to decrease with increasing

grid size, drainage basins tend to be larger, and stream

length decreases significantly.

The Stream Power Law itself has a number of

issues when scale is considered. The first is the

application of the area-discharge proxy assumed in

most discussions of stream power. We have presented

evidence that for small river systems, the area-dis-

charge proxy appears to be appropriate; but for large,

continental-scale systems like the Indus River, the

area-discharge proxy can mischaracterize the general

pattern of discharge in the river. We are aware of

similar patterns throughout the major river systems of

the Himalaya, and it is likely that other continental

rivers flowing through major climatic zones have

similar problems with the area-discharge proxy. We

present a simple, computationally efficient model for

accounting explicitly for the spatially variable rainfall

on the downstream structure of discharge accumula-

tion. The parameterization of k, m and n in the stream

power equation is very sensitive to slight changes in

the best-fit line through an area-slope plot. Hence, as

the number of sample points in a river long profile

decreases with decreasing resolution, a bias in the

regression can result. In our example, the bias in-

Fig. 11. Variation in mean stream power of the Elwha River as a function of grid resolution. Resolution is the length of one side of a square grid

cell; hence, a ‘‘10-m’’ grid cell has a surface area of 100 m2. Mean stream power per grid cell (
_
X) increases with grid size while mean stream

power per unit area (
_
x) decreases with increasing grid size. The low-resolution DEMs used in each stream power calculation were derived from

the 10-m DEM.
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creased h values and decreased ks values. Moreover,

the general decease in grid slope as grid resolution

decreases is coupled to a decrease in mean stream

power per unit area. Taken together, these results

show a grid scale dependence of stream power that

indicates the need for caution when comparing stream

power erosion models generated from different grid

resolutions.

Our current ability to estimate rates at which rivers

erode bedrock remains limited by both a lack of high-

resolution data and incomplete understanding of how

to scale-up the pertinent erosional processes and

mechanisms. Although it is still very difficult to obtain

high-resolution topographic data for most large moun-

tain ranges, high-resolution data on climate, geology,

and land cover are even more difficult to acquire.

Large-scale erosion modeling in GIS is relatively

new and suffers from a number of problems that are

not well documented or completely identified, but the

technology offers a powerful set of tools for develop-

ing geomorphic insight into the topographic evolution

of mountain ranges.
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